隨著光纖通信技術(shù)的發(fā)展和密集波分復(fù)用系統(tǒng)的應(yīng)用,光聯(lián)網(wǎng)已經(jīng)成為網(wǎng)絡(luò)發(fā)展的趨勢。光聯(lián)網(wǎng)絡(luò)技術(shù)的實(shí)現(xiàn)主要依賴于光開關(guān)、光濾波器、光放大器、密集波分復(fù)用(DWDM)技術(shù)等器件和技術(shù)的進(jìn)展。密集波分復(fù)用技術(shù)的發(fā)展是推動全光通信發(fā)展的重要因素,而光聯(lián)網(wǎng)的提出將使設(shè)備制造商、電信運(yùn)營商都面臨巨大的機(jī)遇與挑戰(zhàn)。
光開關(guān)是全光交換中的關(guān)鍵器件,可實(shí)現(xiàn)在全光層的路由選擇、波長選擇、光交叉連接以及自愈保護(hù)等功能。目前光開關(guān)主要應(yīng)用包括:
光交叉連接(OXC)。OXC由光開關(guān)陣列組成,主要實(shí)現(xiàn)動態(tài)的光路徑管理、光網(wǎng)絡(luò)的故障保護(hù)、靈活增加新業(yè)務(wù)等。光交叉連接對開關(guān)的要求主要有低插損、低 串?dāng)_、低開關(guān)時(shí)間以及無阻塞運(yùn)作。目前微機(jī)電系統(tǒng)技術(shù)已經(jīng)在光交換應(yīng)用中進(jìn)入實(shí)驗(yàn)階段,由于其對波長、數(shù)據(jù)速率和信號格式都透明,在不遠(yuǎn)的將來有希望實(shí)現(xiàn)光層上的交換。
用光開關(guān)實(shí)現(xiàn)網(wǎng)絡(luò)的自動保護(hù)倒換。當(dāng)光纖斷裂或傳輸發(fā)生故障時(shí),就可以通過光開關(guān)改變業(yè)務(wù)的傳輸路徑,實(shí)現(xiàn)對業(yè)務(wù)的保護(hù)。通常這種保護(hù)倒換只需1×2端口的光開關(guān)就可以實(shí)現(xiàn)。
用1×N光開關(guān)實(shí)現(xiàn)網(wǎng)絡(luò)監(jiān)控。在遠(yuǎn)端光纖測試點(diǎn)通過1×N光開關(guān)把多根光纖接到一個(gè)光時(shí)域反射儀(OTDR)上,通過光開關(guān)倒換實(shí)現(xiàn)對所有光纖的監(jiān)測;蛘卟迦刖W(wǎng)絡(luò)分析儀實(shí)現(xiàn)網(wǎng)絡(luò)在線分析。
光纖通信器件測試。光器件、光纜以及子系統(tǒng)產(chǎn)品在測試過程中,可以使用光開關(guān)同時(shí)測試多個(gè)器件,從而簡化測試,提高效率。
光分插復(fù)用器(OADM)。主要應(yīng)用于環(huán)形的城域網(wǎng)中,實(shí)現(xiàn)單個(gè)波長和多個(gè)波長從光路自由上下。用光開關(guān)實(shí)現(xiàn)的OADM可以通過軟件控制動態(tài)上下任意波長,這樣將增加網(wǎng)絡(luò)配置的靈活性。
傳統(tǒng)的光開關(guān)技術(shù)主要采用固態(tài)波導(dǎo)和光機(jī)械兩種技術(shù):固態(tài)波導(dǎo)開關(guān)由于有較高的串音、損耗和功耗,只能在有限的開關(guān)陣列中應(yīng)用,不適合向大規(guī)模的開關(guān)陣列中擴(kuò)展;機(jī)械開關(guān)雖然有比較低的插入損耗和串音,但其設(shè)備龐大、可擴(kuò)展性一般,也不適用于大規(guī)模的開關(guān)陣列。目前已經(jīng)涌現(xiàn)了很多新技術(shù),主要包括微機(jī)電光開關(guān)、噴墨氣泡光開關(guān)、液晶光開關(guān)、熱光效應(yīng)開關(guān)、聲光效應(yīng)開關(guān)、全息開關(guān)、液晶光柵開關(guān)等。
一般主要用以下參數(shù)考察光開關(guān):開關(guān)速度、陣列大小、損耗、可靠性以及可擴(kuò)展性等;诓煌膽(yīng)用,各種技術(shù)的發(fā)展也不盡相同。下面對幾種主要技術(shù)及其應(yīng)用進(jìn)行分析:
基于微機(jī)電系統(tǒng)(MEMS)的光開關(guān),由于其與光信號的格式、波長、協(xié)議、調(diào)制方式、偏振、傳輸方向等均無關(guān),而且在損耗、擴(kuò)展性上都要優(yōu)于其它類型,與未來光網(wǎng)絡(luò)發(fā)展所要求的透明性和可擴(kuò)展等趨勢相符合,有可能成為核心光交換器件中的主流。其原理就是通過靜電或其他控制力使可以活動的微鏡發(fā)生轉(zhuǎn)動,從而改變輸入光的傳播方向。由于MEMS技術(shù)可以利用類似IC的工藝成批加工生產(chǎn),盡管制造過程比較復(fù)雜,但是可以批量生產(chǎn),因此降低了單個(gè)的成本。
目前二維子系統(tǒng)最大容量是32×32端口,多個(gè)子系統(tǒng)可以連接起來形成大的交叉陣列,最大可以達(dá)到512×512端口。由于是機(jī)械運(yùn)動,MEMS光開關(guān)的開關(guān)時(shí)間都在ms量級。MEMS光開關(guān)的插損比較大,主要包括透鏡的耦合損耗、高斯光傳播損耗以及鏡子角度偏差引起的損耗。OMM公司4×4光開關(guān)的插損達(dá) 到3dB,16×l6開關(guān)陣列的插損增加到5至7dB。另外,任何機(jī)械摩擦、磨損以及外部振動都可能使它的可靠性降低。
OMM公司預(yù)計(jì)于2001年中期推出三維產(chǎn)品;在原理上類似二維方案,但在N個(gè)輸入光纖和N個(gè)輸出光纖之間僅使用了2×N個(gè)微鏡,每個(gè)微鏡都有N個(gè)可能的位置,因此驅(qū)動結(jié)構(gòu)非常復(fù)雜,成本也隨之增加。
盡管MEMS技術(shù)還有很多不足,但仍得到了眾多公司的推崇,技術(shù)也在蓬勃發(fā)展。Nortel在2000年初以32.5億美元購得制造MEMS光器件的Xros公司。Lucent推出了Wave Star Lamda Router的全光路由系統(tǒng),其光交叉連接系統(tǒng)可實(shí)現(xiàn)224×224的交換容量。
目前主要供應(yīng)商包括OMM、Lucent、Nortel、IMM、Cronos、Memscap、Calient等。
Agilent (安捷倫)公司結(jié)合噴墨打印和硅平面光波導(dǎo)兩種技術(shù),開發(fā)出一種二維光交叉連接系統(tǒng)。安捷倫公司的全光交換芯片曾在OFC2000年會上引起轟動。該設(shè)備 由許多交叉的硅波導(dǎo)和位于每個(gè)交叉點(diǎn)的微型管道組成,微型管道里填充一種與折射率匹配的液體用以允許缺省條件下的無交換傳輸。當(dāng)有入射光照入并需要交換 時(shí),一個(gè)熱敏硅片會在液體中產(chǎn)生一個(gè)小泡(Bubble),小泡將光從入射波導(dǎo)中的光信號全反射至輸出波導(dǎo)。
Agilent公司目前已經(jīng)制造出32×32和32×16端口光開關(guān)子系統(tǒng),并且可以把這些子系統(tǒng)連接起來組成更大的交換陣列。其開關(guān)響應(yīng)時(shí)間小于10ms,可以用于光纖保護(hù)倒 換。并且,這種開關(guān)對偏振相關(guān)損耗和偏振模色散都不敏感;由于器件本身沒有可活動部件,因此可靠性很好,可以滿足電信應(yīng)用中時(shí)間可靠性要求;同時(shí)這種光開 關(guān)可以大批量生產(chǎn)。目前供應(yīng)商有Agilent公司。
液晶(Liquid crystal)光開關(guān)是根據(jù)其偏振特性來完成交換的。典型的液晶器件包括無源和有源部分,它實(shí)現(xiàn)光交換主要由以下步驟來進(jìn)行:首先把輸入光分為兩路偏振 光,然后把光輸入液晶內(nèi),液晶根據(jù)是否加電壓來改變光的偏振狀態(tài):由于電光效應(yīng),在液晶上加電壓將改變非常光的折射率,從而改變光的偏振狀態(tài);最后光射到 無源光器件上,根據(jù)光的偏振方向把光輸出到預(yù)定的輸出端口。
液晶光開關(guān)理論上的網(wǎng)絡(luò)重構(gòu)性可能比較好,但是目前最大端口數(shù)為80,因此 液晶被認(rèn)為更適合用于較小的交換系統(tǒng)中。由于在液晶中光被分成偏振方向不同的兩束光,最后把它們合起來,如果兩束光